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We study the topological edge states of the Haldane model with zigzag/armchair lattice edges. The Harper
equation for solving the energies of the edge states is derived. The results show that there are two edge states
in the bulk energy gap corresponding to the two zero points of the Bloch function on the complex-energy
Riemann surface. The edge-state energy loops move around the hole of the Riemann surface in appropriate
system parameter regimes. The quantized Hall conductance can be expressed by the winding numbers of the
edge states, which reflects the topological feature of the Haldane model.
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The integer quantum Hall effect �IQHE�, discovered in
1980 by Klaus von Klitzing,1 is a striking set of macroscopic
quantum phenomena observed in a high-mobility two-
dimensional electron gas �2DEG� in a strong transverse mag-
netic field �typically, B�1–30 T�. Soon after the Laughlin’s
famous gauge invariance argument and the treatment of the
IQHE as an adiabatic quantum pump,2 it was shortly
recognized3 that the Hall conductance �xy at the plateaus can
be understood in terms of topological invariants known as
Chern numbers,4 which are integrals of the k-space Berry
curvatures of the bulk states over the magnetic Brillouin
zone. While IQHE finds its elegant connection through the
adiabatic curvature with bulk topological invariants,
Halperin5 first stressed that the existence of the sample
edges, which produces the current-carrying localized edge
states in the Landau energy gap, is essential in the Laughlin’s
gauge invariance argument. Hatsugai6 further developed a
topological theory of the edge states in which topological
invariants are the winding numbers of the edge states on the
complex-energy Riemann surface �RS�.

The presence of IQHE fundamentally rely on the breaking
of the time-reversal symmetry �TRS�, which in the above
mentioned works is brought about by imposing an external
magnetic field on the electrons. Besides this external mag-
netic field, the TRS can also be broken by a variety of the
other extrinsic or intrinsic mechanisms. A most straightfor-
ward way is, like what has been carried out in the Aharonov-
Bohm effect, the introduction of magnetic flux �instead of
magnetic field� to the Bloch electrons. In virtue of such a
way, by using a honeycomb lattice with the complex hopping
matrix elements of the next-nearest-neighboring sites in-
cluded, Haldane7 first showed the nonzero Chern numbers
and, thus, the IQHE can be realized in zero magnetic field. In
contrast with the extensive topological studies8 of the honey-
comb lattice exposed to a uniform magnetic field, which is
inspired by the recent discovery of the peculiar IQHE in
grapheme,9,10 a detailed study of the topological edge states
for the specific Haldane model with zero magnetic field is
still lacking. This issue is stressed in the present paper. Also,
our study is motivated by the observation that in addition to
its importance in charge IQHE, the spin-doubled Haldane
model, in which TRS is recovered, has also played a key role
in understanding the quantum spin Hall effect11 and the dif-

ferent phase of matter.12 Note that a straightforward numeri-
cal calculation of the edge-state spectrum has been given in
some cases.13 However, the topological character, in particu-
lar, the winding properties of the edge states in the Haldane
model, has not been previously considered, which is the fo-
cus of our present study.

Our discussion of the topological edge states for the
Haldane model begins with deriving the Harper equation to
describe the wave-function transfer relation between two
edges in a honeycomb lattice ribbon. It is found that there are
two edge states in the bulk energy gap corresponding to two
zero points of the Bloch function on the complex-energy RS.
The edge-state energy loops move around the hole of the RS,
giving rise to nontrivial winding numbers. The quantized
Hall conductance can be expressed by the winding numbers
of the edge states, which reflects the topological feature of
the Haldane model.

The honeycomb lattice is composed of two sublattices
�denoted by “A” and “B” in Fig. 1�. The corresponding
stripes with zigzag edges and armchair edges are plotted in
Figs. 1�a� and 1�b�, respectively. The lattice tight-binding
Hamiltonian7 is given by

H = �
i

t0ci
†ci + �

�i,j�
t1ci

†cj + �
��i,j��

t2ei�ijci
†cj . �1�

In the above Hamiltonian, the on-site energy t0= +M on A
site and −M on B site. t1 and t2 are real hopping matrix
elements between nearest neighbors on the different and the
same sublattices, respectively. To break TRS, a complex
phase �ij is introduced to the next-nearest-neighbor hopping
t2. Following Haldane,7 we set the magnitude of this com-
plex phase as ��ij�=� and the direction of the positive phase
is anticlockwise. Note that the net flux is zero in one unit
cell. Since the spin-orbital effect is not included, we neglect
the spin indices for simplicity.

Now, let us derive the Harper equation14,15 of the honey-
comb lattice ribbon with zigzag edges. We suppose that the
system is periodic in the x direction while it has two edges in
the y direction �see Fig. 1�a�	. In the following we replace
index i with �mns� to denote the lattice site, where �mn� label
the unit cells and s label the sites A and B in this cell. The
distance of the nearest-neighboring lattice sites is set to be in
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unity throughout this paper. Since the lattice is periodic in
the x direction, we can use a momentum representation of the
electron operator

cmns =
1


Lx
�
kx

eikxXmnscns�kx� , �2�

where �Xmns ,Ymns� represents the coordinate of the site s in
the unit cell �mn� and kx is the momentum along the x direc-
tion. Let us consider the one-particle state ���kx��
=��ns�kx�cns

† �kx��0�. Inserting it into the Schrödinger equa-
tion H���=����, one can easily get the following two eigen-
value equations for sites A and B:

��nA = �M + f+��nA + g−���n+1�A + ��n−1�A	

+ t1��n−1�B + g0�nB,

��nB = �− M + f−��nB + g+���n+1�B + ��n−1�B	

+ t1��n+1�A + g0�nA, �3�

where f�=2t2 cos�
3kx���, g�=2t2 cos�

3
2 kx���, and g0

=2t1 cos�

3
2 kx�. Eliminating the B sites, we obtain a differ-

ence equation for A sites,

�n = b���n−1� + ��n−3�	 + d��n−2� − ��n−4�, �4�

where

b =
1

g+g−
�2�g+ + g−�� + 2g0�t1 −

t2
2

t1

 +

t2

t1
g0M sin �

− 4t2
2 cos�3
3

2
kx
cos 2�� ,

d =
1

g+g−
�2�M2 + t1

2 − �2� − f+f−

+ 4t2�g0
2

t1
2 − 2
�� cos � − M sin ��� − 2, �5�

and �nA was replaced by �n. Equation �4� is the so-called
Harper equation.14,15 The next key step is to represent Eq. �4�
in the transfer-matrix form. After a tedious but straightfor-
ward derivation, we find that by introduction of a new wave
function �n, which is a linear transformation of the original
wave function �n,

�n = �n +
− b + 
b2 + 4�2 + d�

2
�n−1 + �n−2, �6�

then the new wave function �n can be written in the follow-
ing transfer-matrix form:

� �n

�n−1

 = �t − 1

1 0

��n−1

�n−2

 � M̃�����n−1

�n−2

 , �7�

where t= b+
b2+4�2+d�
2 . More generally, we take �0 and �Ly

as
the wave functions at two open edges. Then we get a reduced
transfer matrix linking the two edges as follows:

��Ly+1

�Ly


 = M�����1

�0

 , �8�

where

M��� = �M̃���	Ly = �M11��� M12���
M21��� M22���

� . �9�

Many solutions of Eq. �8� can be obtained by different
choices of �0 and �1.

Similarly, one can obtain the eigenvalue equations of a
honeycomb lattice ribbon with armchair edges,

�� − M��nA = t1e−ika�nB + t1ei
ka
2 ���n+1�B + ��n−1�B	

+ t2�e−i���n+2�A + ei���n−2�A	 +
t2

t1
g0�ei���n+1�A

+ e−i���n−1�A	 ,

FIG. 1. �Color online� The structure of honeycomb lattice rib-
bons with �a� zigzag edges and �b� armchair edges. Open and filled
circles denote the A and B sublattice sites, respectively. The rect-
angle across a ribbon denotes the unit cell along this ribbon, while
the dashed lines linking the same sublattice sites in a hexagon de-
note the presence of second-neighbor hopping with complex phase.

HAO et al. PHYSICAL REVIEW B 78, 075438 �2008�

075438-2



�� + M��nB = t1eika�nA + t1e−i
ka
2 ���n+1�A + ��n−1�A	

+ t2�ei���n+2�B + e−i���n−2�B	

+
t2

t1
g0�e−i���n+1�B + ei���n−1�B	 . �10�

However, because the derivation of the Harper equation for a
honeycomb lattice ribbon with armchair edges is too sophis-
ticated, here we do not write out the transfer-matrix expres-
sion of this Harper equation. Moreover, because the main
results and the discussions on the honenycomb stripes with
zigzag and armchair edges are similar, in the following we
focus our attention to a ribbon with zigzag edges. The gen-
eral open boundary condition is

�Ly
= �0 = 0. �11�

With Eqs. �8� and �9�, one can easily get that the solutions
satisfy

M21��� = 0 �12�

and

�Ly−1 = − M11����1. �13�

If we use a usual normalized wave function, the state is
localized at the edges as

��M11���� � 1 localized at y � 1 �down edge� ,

�M11���� 	 1 localized at y � Ly − 1 �up edge� .
�
�14�

Because the analytical derivation of the energy spectrum
in the presence of edges is very difficult, we now start a
numerical calculation from Eqs. �3� and �10�. Varying all the
controllable parameters, which are the relative site energy
M / t1, the next-nearest-neighbor hopping t2 / t1, and the com-
plex phase �, we can get three different cases happening in
the energy spectrum of the honeycomb lattice ribbons. We
draw in Figs. 2�a�–2�c� �Figs. 3�a�–3�c�	 the energy spectrum
of the ribbons with zigzag �armchair� edges as a function of
kx for these three different cases, i.e., the case M / t2


3
3 sin � �case I�, the case M / t2
−3
3 sin � �case II�,
and the case M / t2�3
3�sin �� �case III�, respectively. The
number of sites A �B� in y direction is chosen to be Ly =40.
Clearly, from Figs. 2 and 3 one can see that there are two
dispersed energy bands �the shaded areas� with two edge
states lying in the energy gap. It is our task to show that the
geometric nature of the edge states in these three kinds of
parameter regions are totally different, which can be de-
scribed by the winding numbers of the edge states on a
complex-energy RS within the topological edge theory.6

To show this, first, we ignore the open boundary condition
and consider the bulk Bloch function at sites with y coordi-
nate of �Ly −1�. For Bloch function, �0

�b� and �1
�b� compose an

eigenvector of M with the eigenvalue �,

M�����1
�b�

�0
�b� 
 = ������1

�b�

�0
�b� 
 . �15�

In order to discuss the wave function of the edge state, we
extend the energy to a complex energy. In the following, we
use a complex variable z instead of real energy �. From Eq.
�15� we get

��z� =
1

2
�
�z� − 

2�z� − 4	 �16�

and

�Ly−1 = −
M11�z� + M22�z� − �

− M11�z� + M22�z� + �
M21�z��1, �17�

where 
�z�=Tr�M�z�	 and �=

2�z�−4. Clearly,

det M��� = 1 �18�

since det M̃���=1. From Eq. �17� one can find that the ana-
lytic structure of the wave function is determined by the
algebraic function �=

2�z�−4. The RS of �=

2�z�−4 on
the complex-energy plane can be built by the conglutination
between different analytic branches. Here, the close
complex-energy plane can be obtained from the open
complex-energy plane through spheral-pole mapping �see
Fig. 4�a�	. Now let us discuss the analytic structure of �

FIG. 2. �Color online� Energy spectrum of the honeycomb lat-
tice ribbon with zigzag edges under different complex phases pa-
rameters: �a� �=� /3, �b� �=−� /3, and �c� �=� /6. The other
parameters are set as M / t1=1 and t2 / t1=1 /3 in all three figures.
The shaded areas are the energy bands and the colored lines are the
spectrum of the edge states. The red �solid� and blue �dashed� lines
mean that the edge states are localized near the down and up edges,
respectively.

FIG. 3. �Color online� Energy spectrum of the honeycomb lat-
tice ribbon with armchair edges under different complex phases
parameters: �a� �=� /3, �b� �=−� /3, and �c� �=� /6. The other
parameters are set as M / t1=1 and t2 / t1=1 /3 in all three figures.
The shaded areas are the energy bands and the colored lines are the
spectrum of the edge states. The red �solid� and blue �dashed� lines
mean that the edge states are localized near the down and up edges,
respectively.
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=

2�z�−4 on the open complex-energy plane. If the system
has q energy bands, i.e.,

� � ��1,�2	, . . . ,��2j−1,�2j	, . . . ,��2q−1,�2q	 , �19�

where � j denote the energies of the band edges and �i
� j,
i
 j, then � can be factorized as

� = 

2�z� − 4 =
�
j=1

2q

�z − � j� . �20�

In the present Haldane model, there are two energy bands, so
q=2. The two single-value analytic branches are defined on
the same complex-energy plane with q secants. The differ-
ence between the two branches is specified in the following
paragraph.

For an up- or down-edge-state energy � j in the gap
��2j ,�2j+1	, in order to ensure ��� j��0, we divide the two
single-value analytic branches in terms of the parity �even-
ness or oddness� of j. Let us consider the case that the energy
z lies in the band ��2j−1 ,�2j	 �see Fig. 4�a�	. The left side of
this energy band is the �j−1�th gap, while the right side is
the jth gap. When the energy z moves from the jth band to
the �j−1�th gap �the jth gap� along an arbitrary path c1 �c2�,
only the singularities �2j−1 and �2j have contributions to the
variance of the principal value of the argument of �. On the
up bank of the secant, we distinguish two branches R+ and
R− as the following. For even values of j, if we set arg�z
−�2j−1�=0 and arg�z−�2j�=�, which corresponds to
��� j−1��0 ���� j�
0	 when z moves along c1 �c2�, then the
branch R+ is defined as a complex plane with q secants.
Whereas, if we set arg�z−�2j−1�=2� and arg�z−�2j�=�,
which corresponds to ��� j−1�
0 ���� j��0	 when z moves
along c1 �c2�, then the branch R− is defined as a complex
plane with q secants. The definitions of R+ and R− for odd
values of j are reverse to those for even values of j. So, if z
lies in the jth gap from below on the real axis,

��− 1� j� � 0, z:real on R��� = + ,− � ,

and at energies � j ��R� , �= + ,−� of the edge states, we
have

��� j� = ��− 1� j�M11�� j� − M22�� j�� . �21�

In addition, one can easily obtain


�����− 2 for j odd

�2 for j even
� , �22�

where the energy � �on R�� is in the jth gap.
When the branches R+ and R− on the open complex-

energy plane are mapped to the close complex-energy plane
through spheral-pole projection, one can get two single-value
analytic spherical surfaces. The RS is obtained by gluing the
two spherical surfaces at these branch cuts with making sure
that the � banks face the � banks of other sphere �see Fig.
4�b�	. Note that there are two real axes after gluing. In the
present model the genus of the RS is g=1, which is the
number of the energy gaps. The wave function is defined on
the g=1 RS �g=1�kx�. The branch of the Bloch function is
specified as ��0, which we have discussed above. With
Eqs. �22�, �21�, and �17�, and using the fact that �Ly−1�� j�
=0 for � j �R� and �Ly−1�� j��0 for � j �R−�, one can ob-
tain that when the zero point is on the upper sheet of RS
�R+�, the edge state is localized at the down edge; when the
zero point is on the lower sheet of RS �R−�, the edge state is
localized at the up edge.

Figures 5�a�–5�c� schematically show the RSs for the
present Haldane model with the system parameters belong-
ing to case I �M / t2
3
3 sin ��, case II �M / t2

−3
3 sin ��, and case III �M / t2�3
3�sin ���, respectively.
On each RS �g=1�kx� the energy gap corresponds to the loop
around the hole of the �g=1�kx� and the energy bands corre-
spond to the closed paths vertical to the energy-gap loop on
�g=1�kx�. The Bloch function is defined on this surface. For
the fixed kx and �, there is always g=1 zero point at the
down-edge-state energy � j

�down�. Since there are two real axes
on the �g=1�kx�, correspondingly, there is g=1 zero point at
the up-edge-state energy � j

�up�.
The above analysis is for the fixed kx. Changing kx in one

period, we can consider a family of RSs �g=1�kx�. �g=1�kx�
can be modified by this change. However, all the RSs
�g=1�kx� with different kx are topologically equivalent if, as
what happens in the present model, there are stable energy
gaps in the two-dimensional �2D� energy spectrum. By iden-
tifying the topologically equivalent RSs �g=1�kx�, the behav-
ior of the track of � j�kx� �including the up-edge-state energy
� j

�up� and down-edge-state energy � j
�down�	 depends on system

parameters as shown in Fig. 5. In Fig. 5�a�, which corre-
sponds to case I of M / t2
3
3 sin �, one can observe that
by varying kx, the down-edge-state energy � j

�down��kx� moves
from the lower band �band 1 in Fig. 5� edge to the upper
band �band 2 in Fig. 5� edge, while the down-edge-state
energy � j

�down��kx� moves from the upper band edge to the
lower band edge. That is to say, the two edge-state energy
tracks in the same energy gap move around the hole and
form an oriented loop C�� j�. In case II of M / t2


FIG. 4. �Color online� �a� The open complex-energy plane are
mapped to the close complex-energy plane through spheral-pole
projection. �b� Two sheets with two cuts which correspond to the
energy bands of the honeycomb lattice ribbons. The RS of the
Bloch function is obtained by gluing the two spheres along the
arrows near the cuts.
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−3
3 sin �, as shown in Fig. 5�b�, the two edge-state energy
tracks moving around the hole also form an oriented loop.
However, the orientation of the loop is right about with re-
spect to that in case I. Finally, in case III of M / t2
�3
3�sin ��, as shown in Fig. 5�c�, one can observe that the
� j�kx� moves along the hole and turns back before arriving at
the second energy band. In this case, the two edge-state en-
ergy tracks in the same energy gap approximately form two
circularities.

It is known that on a general genus-g RS, all kinds of
loops �the first homotopy group� are generated by 2g canoni-
cal loops �generators�, �i and �i with i=1, . . . ,g. See Fig. 5
for g=1. The intersection number of these curves �including
directions�6 is given by �see Fig. 6�

I��i,� j� = �ij . �23�

Any curves on the RS are spanned homotopically by �i and
�i. When the edge-state energy loop � j�kx� moves p times

around the jth hole with some integer p, one has

C�� j� � � j
p, �24�

which means

I„�i,C�� j�… = p�ij . �25�

When the Fermi energy �F of the 2D system lies in the jth
bulk energy gap, the Hall conductance is given by the wind-
ing number of the edge state,6 which is given by the number
of intersections I(� j ,C�� j�) ��I�C�� j�	� between the ca-
nonical loop � j on the RS and the trace of � j. In the present
single-gap model, we obtain the Hall conductance provided
by the edge states as follows:

�xy
edge = −

e2

h
I„C���… . �26�

From Figs. 5�a� and 5�b� it can be observed that � moves one
time across the hole �p=1�, which in terms of Eq. �24�
means C�����. Considering simultaneously the winding di-
rection �see Fig. 6�, one can obtain that in Fig. 5�a�
I(C���)=−1, while in Fig. 5�b� I(C���)=1. In Fig. 5�c�, be-
cause p=0, I(�i ,C��i�)=0 and the Hall conductivity is zero.
Therefore, we get

�xy
edge =�

e2

h
, M/t2 
 3
3 sin �

0, M/t2 � 3
3�sin ��

−
e2

h
, M/t2 
 − 3
3 sin �

� . �27�

Finally, let us compare this result for the honeycomb lat-
tice ribbons with zigzag/armchair edges with the bulk case,
in which the topological invariant is the Chern number. In
the bulk Haldane model, when the Fermi energy �F lies in
the energy gap, the Hall conductance is quantized as �xy

bulk

= e2

h C1, where C1 is the Chern number of the lower energy
band. A straightforward calculation of the bulk Haldane
model gives the value of the Chern number C1 as follows:

C1 = � 1, M/t2 
 3
3 sin �

0, M/t2 � 3
3�sin ��
− 1, M/t2 
 − 3
3 sin �

� . �28�

From Eqs. �27� and �28� one can obtain �xy
edge=�xy

bulk, which is
in accord with the established recognition5,6 on the Hall con-
ductance in the systems with and without edges.

In summary, we have investigated the topological prop-
erty of the edge states in the Haldane model. The Harper
equations for solving and analyzing the edge states have
been derived. It has been found that there are two edge states
lying in the bulk energy gap. These two edge states move by
varying kx around the hole in the RS and form an orientated
energy loop. With the winding number of the edge states, we
have obtained that the edge-state Hall conductance is �xy

edge

= �
e2

h or 0 under different cases, which agrees with that
based on the topological bulk theory.

FIG. 5. Riemann surfaces of the Bloch functions for different
winding numbers: �a� I=1, �b� I=−1, and �c� I=0.

FIG. 6. Intersection number I�A ,B� of two curves A and B. Each
intersection point contributes by +1 or −1 according to the
direction.
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